364 research outputs found

    Closed-loop focal plane wavefront control with the SCExAO instrument

    Get PDF
    This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. This absolute sensor is used here in a closed-loop to compensate the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low order modes corresponding to eight zernike modes (from focus to spherical). This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper precises the range of errors this wavefront sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Beyond this application, because of its low hardware impact, APF-WFS can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.Comment: 9 pages, 14 figures, accepted for publication by A&

    SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies

    Get PDF
    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is an extremely modular high- contrast instrument installed on the Subaru telescope in Hawaii. SCExAO has a dual purpose. Its position in the northern hemisphere on a 8-meter telescope makes it a prime instrument for the detection and characterization of exoplanets and stellar environments over a large portion of the sky. In addition, SCExAO’s unique design makes it the ideal instrument to test innovative technologies and algorithms quickly in a laboratory setup and subsequently deploy them on-sky. SCExAO benefits from a first stage of wavefront correction with the facility adaptive optics AO188, and splits the 600-2400 nm spectrum towards a variety of modules, in visible and near infrared, optimized for a large range of science cases. The integral field spectrograph CHARIS, with its J, H or K-band high-resolution mode or its broadband low-resolution mode, makes SCExAO a prime instrument for exoplanet detection and characterization. Here we report on the recent developments and scientific results of the SCExAO instrument. Recent upgrades were performed on a number of modules, like the visible polarimetric module VAMPIRES, the high-performance infrared coronagraphs, various wavefront control algorithms, as well as the real-time controller of AO188. The newest addition is the 20k-pixel Microwave Kinetic Inductance Detector (MKIDS) Exoplanet Camera (MEC) that will allow for previously unexplored science and technology developments. MEC, coupled with novel photon-counting speckle control, brings SCExAO closer to the final design of future high-contrast instruments optimized for Giant Segmented Mirror Telescopes (GSMTs)

    SCExAO/CHARIS Near-infrared Direct Imaging, Spectroscopy, and Forward-Modeling of Îș And b: A Likely Young, Low-gravity Superjovian Companion

    Get PDF
    We present SCExAO/CHARIS high-contrast imaging/JHK integral field spectroscopy of Îș And b, a directly imaged low-mass companion orbiting a nearby B9V star. We detect Îș And b at a high signal-to-noise ratio and extract high-precision spectrophotometry using a new forward-modeling algorithm for (A-)LOCI complementary to KLIP-FM developed by Pueyo et al. Îș And b's spectrum best resembles that of a low-gravity L0–L1 dwarf (L0–L1Îł). Its spectrum and luminosity are very well matched by 2MASS J0141-4633 and several other 12.5–15 M_J free-floating members of the 40 Myr old Tuc–Hor Association, consistent with a system age derived from recent interferometric results for the primary, a companion mass at/near the deuterium-burning limit (13_(-2)^(+12) M_J), and a companion-to-primary mass ratio characteristic of other directly imaged planets (q ~ 0.005_(-0.001)^(+0.005)). We did not unambiguously identify additional, more closely orbiting companions brighter and more massive than Îș And b down to ρ ~ 0farcs3 (15 au). SCExAO/CHARIS and complementary Keck/NIRC2 astrometric points reveal clockwise orbital motion. Modeling points toward a likely eccentric orbit: a subset of acceptable orbits include those that are aligned with the star's rotation axis. However, Îș And b's semimajor axis is plausibly larger than 55 au and in a region where disk instability could form massive companions. Deeper high-contrast imaging of Îș And and low-resolution spectroscopy from extreme adaptive optics systems such as SCExAO/CHARIS and higher-resolution spectroscopy from Keck/OSIRIS or, later, IRIS on the Thirty Meter Telescope could help to clarify Îș And b's chemistry and whether its spectrum provides an insight into its formation environment

    Advances in infrared and imaging fibres for astronomical instrumentation

    Get PDF
    Optical fibres have already played a huge part in ground based astronomical instrumentation, however, with the revolution in photonics currently taking place new fibre technologies and integrated optical devices are likely to have a profound impact on the way we manipulate light in the future. The Anglo-Australian Observatory, along with partners at the Optical Fibre Technology Centre of the University of Sydney, is investigating some of the developing technologies as part of our Astrophotonics programme. In this paper we discuss the advances that have been made with infrared transmitting fibre, both conventional and microstructured, in particular those based on flouride glasses. Flouride glasses have a particularly wide transparent region from the UV through to around 7um, whereas silica fibres, commonly used in astronomy, only transmit out to about 2um. We discuss the impact of advances in fibre manufacture that have greatly improved the optical, chemical resistance and physical properties of the flouride fibres. We also present some encouraging initial test results for a modern imaging fibre bundle and imaging fibre taper.Comment: 11 pages, 7 figures, to be published in Proc. SPIE 6273 Optomechanical Technologies for Astronom

    The infrared Doppler (IRD) instrument for the Subaru telescope: instrument description and commissioning results

    Get PDF
    The Infrared Doppler (IRD) instrument is a fiber-fed high-resolution NIR spectrometer for the Subaru telescope covering the Y,J,H-bands simultaneously with a maximum spectral resolution of 70,000. The main purpose of IRD is a search for Earth-mass planets around nearby M-dwarfs by precise radial velocity measurements, as well as a spectroscopic characterization of exoplanet atmospheres. We report the current status of the instrument, which is undergoing commissioning at the Subaru Telescope, and the first light observation successfully done in August 2017. The general description of the instrument will be given including spectrometer optics, fiber injection system, cryogenic system, scrambler, and laser frequency comb. A large strategic survey mainly focused on late-type M-dwarfs is planned to start from 2019

    No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15: LkCa 15 bcd are Likely Inner Disk Signals

    Get PDF
    Two studies utilizing sparse aperture-masking (SAM) interferometry and Hα differential imaging have reported multiple Jovian companions around the young solar-mass star, LkCa 15 (LkCa 15 bcd): the first claimed direct detection of infant, newly formed planets ("protoplanets"). We present new near-infrared direct imaging/spectroscopy from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) integral field spectrograph and multi-epoch thermal infrared imaging from Keck/NIRC2 of LkCa 15 at high Strehl ratios. These data provide the first direct imaging look at the same wavelengths and in the same locations where previous studies identified the LkCa 15 protoplanets, and thus offer the first decisive test of their existence. The data do not reveal these planets. Instead, we resolve extended emission tracing a dust disk with a brightness and location comparable to that claimed for LkCa 15 bcd. Forward-models attributing this signal to orbiting planets are inconsistent with the combined SCExAO/CHARIS and Keck/NIRC2 data. An inner disk provides a more compelling explanation for the SAM detections and perhaps also the claimed Hα detection of LkCa 15 b. We conclude that there is currently no clear, direct evidence for multiple protoplanets orbiting LkCa 15, although the system likely contains at least one unseen Jovian companion. To identify Jovian companions around LkCa 15 from future observations, the inner disk should be detected and its effect modeled, removed, and shown to be distinguishable from planets. Protoplanet candidates identified from similar systems should likewise be clearly distinguished from disk emission through modeling

    MagAO-X: project status and first laboratory results

    Get PDF
    MagAO-X is an entirely new extreme adaptive optics system for the Magellan Clay 6.5 m telescope, funded by the NSF MRI program starting in Sep 2016. The key science goal of MagAO-X is high-contrast imaging of accreting protoplanets at Hα. With 2040 actuators operating at up to 3630 Hz, MagAO-X will deliver high Strehls (> 70%), high resolution (19 mas), and high contrast (< 1 × 10^(-4)) at Hα (656 nm). We present an overview of the MagAO-X system, review the system design, and discuss the current project status

    Multi-epoch Direct Imaging and Time-Variable Scattered Light Morphology of the HD 163296 Protoplanetary Disk

    Get PDF
    We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary disk around HD 163296 observed with the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO) and Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)/Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) instruments at Subaru Observatory. The polarimetric imagery resolve a broken ring structure surrounding HD 163296 that peaks at a distance along the major axis of 0.”65 (66 au) and extends out to 0.”98 (100 au) along the major axis. Our 2011 H-band data exhibit clear axisymmetry, with the NW and SE side of the disk exhibiting similar intensities. Our data are clearly different from 2016 epoch H-band observations of the Very Large Telescope (VLT)/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), which found a strong 2.7× asymmetry between the NW and SE side of the disk. Collectively, these results indicate the presence of time-variable, non-azimuthally symmetric illumination of the outer disk. While our SCExAO/CHARIS data are sensitive enough to recover the planet candidate identified from NIRC2 in the thermal infrared (IR), we fail to detect an object with JHK brightness nominally consistent with this object. This suggests that the candidate is either fainter in JHK bands than model predictions, possibly due to extinction from the disk or atmospheric dust/clouds, or that it is an artifact of the data set/data processing, such as a residual speckle or partially subtracted disk feature. Assuming standard hot-start evolutionary models and a system age of 5 Myr, we set new, direct mass limits for the inner (outer) Atacama Large Millimeter/submillimeter Array (ALMA)-predicted protoplanet candidate along the major (minor) disk axis of of 1.5 (2) M_J
    • 

    corecore